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Abstract Modeling the whole cell is a goal of modern systems biology. Current
approaches are neither scalable nor flexible to model complex cellular functions.
They do not support collaborative development, are monolithic and, take a pri-
marily manual approach of combining each biological pathway model’s software
source code to build one large monolithic model that executes on a single computer.
What is needed is a distributed collaborative engineering systems approach that
offers massive scalability and flexibility, treating each part as a services-based
component, potentially delivered by multiple suppliers, that can be dynamically
integrated in real-time. A requirements specification for such a services-based
architecture is presented. This specification is used to develop CytoSolve, a working
prototype that implements the services-based architecture enabling dynamic and
collaborative integration of an ensemble of biological pathway models, that may be
developed and maintained by teams distributed globally. This architecture com-
putes solutions in a parallel manner while offering ease of maintenance of the
integrated model. The individual biological pathway models can be represented in
SBML, CelIML or in any number of formats. The EGFR model of Kholodenko with
known solutions is first tested within the CytoSolve framework to prove it viability.
Success of the EGFR test is followed with the development of an integrative model
of interferon (IFN) response to virus infection using the CytoSolve platform. The
resulting integrated model of IFN yields accurate results based on comparison with
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previously published in vitro and in vivo studies. A open web-based environment
for collaborative testing and continued development is now underway and available
on www.cytosolve.com. As more biological pathway models develop in a disparate
and decentralized manner, this architecture offers a unique platform for collabo-
rative systems biology, to build large-scale integrative models of cellular function,
and eventually one day model the whole cell.

Keywords Complex systems - Systems biology - Distributed computing - Systems
architecture - Whole cell modeling - Distributed Collaborative Engineering (DCE) -
Molecular pathways - Biological networks - Collaboratory

1 Background

A grand challenge of systems biology is to model the whole cell. A model for the
purpose of this discussion is defined to be a mathematical representation along
with its implementation in software including any input data and documentation.
A cell consists of a set of organelles. These organelles interact through the medium
of molecular interactions to provide cellular functions such as protein synthesis,
metabolism, apoptosis, or motility. Systems biology aims to develop a model of
the cell by connecting the biochemical kinetics of these interactions at the
molecular mechanistic level to derive the quantitative descriptions of higher level
cellular functions [1-5].

1.1 The Complexity of Biology

Biology is a field based on experiments, not first principles (ab initio) such as
physics or engineering. It is fundamentally an experimental science. Biologists do
many experiments to understand genes, proteins, protein—protein interactions. One
example of perhaps the largest experiments in biology is the Human Genome
Project (HGP) begun in 1990 and completed in 2005. This effort resulted in the
discovery of only 20,000-25,000 genes, far less than what was originally theorized
[6]. More interesting is the discovery that this number of genes is in the same
realm as that of the nematode Caenorhabditis elegans which has approximately
19,000 genes [7]. More recently, the genome of the starlet sea anemone—
Nematostella vectensis, a delicate, few-inch-long animal in the form of a trans-
parent, multi-tentacled tube - was sequenced and found to have 18,000 genes [8].

Human and a nematode (or sea anemone) have a similar number of genes, but a
great difference in complexity of function as whole organisms. This contradiction
has led scientists to conclude that perhaps the number of genes in the genome is
not connected with the complexity of the organism. Much of an organism’s
complexity can be ascribed to regulation of existing genes by other substances
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(such as proteins) rather than to novel genes [8]. The types and kinds of molecular
interactions across the nucleus, cytoplasm and organelles, beyond the number of
genes in the nucleus, may be the critical element in determining the difference
between human and nematode, for example. This reasoning has led to an even
greater activity to understand the structure of proteins (e.g. the product of genes)
and protein—protein interactions.

1.2 Proteins and Protein—Protein Interactions

As of the writing of this document, approximately 30,000 proteins have been
documented across various publications world wide [9]. Thousands of research
teams across the world have contributed to these discoveries. Discovering the
structure of just one protein is a difficult experimental effort. Such efforts are
highly domain specific and one research team, for example, by itself may focus on
understanding a small set of genes or the structure of a set of specific proteins or
the interactions between certain types of proteins. The protein structures are
determined from experiments using x-ray crystallography [10]. While new pro-
teins are discovered each day, the crystal structure of most proteins is not known.
In many cases, understanding just one protein structure requires the effort of not
just this one laboratory’s research team but the effort of multiple research teams
spread across the world. New databases such as: HPRD, OMIM, PDB, Entrez
Gene, HGNC, Swiss-Prot, GenProt are becoming repositories for storing protein
structure as well as protein—protein interactions.

Approximately 40,000 protein—protein interactions are documented today and
continue to grow. Each day, new protein—protein interactions are found. In addi-
tion, each day, updates of knowledge are made to existing protein—protein inter-
actions. Experiments are used to derive such protein—protein interactions since
these interactions cannot be derived from first principles. Moreover, sometimes,
different research teams may get differing results for the same pair of protein
interactions.

1.3 Biological Pathways

Biological pathways are networks of protein—protein interactions. Single protein—
protein interactions can be combined to build biological pathways. Biologists, in
addition to understanding the nature and function of genes, proteins and protein—
protein interactions, also perform experiments to discover biological pathways.
Today, approximately 60,000 biological pathway diagrams are recorded across a
variety of databases including KEGG, Science STKE, Nature PID, BioPax, Bio-
Carta and others. New biological pathways are being discovered each day.
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A biological pathway consists of two elements: (1) molecules (also known as
molecular species or species) and (2) interactions among those molecules. A
biological pathway is visually represented using a “ball and stick” diagram as
shown in Fig. 1. Each “ball” denoted by circles, rectangles or other geometric
shapes represent the individual molecules. Each “stick” denoted by arrows or lines
represents the molecular interaction. Because experiments not first principles
determine the description of a biological pathway (e.g. which molecules will
interact with another), biological pathways are constantly changing as new
experiments reveal either changes in molecular species or nature of molecular
interactions.

Fig. 1 Example of a biological pathway diagram containing many molecular species denoted by
the geometric shapes of circles, ellipses and diamonds along with the multiple molecular
interactions denoted by lines and arrows [86]
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The biological pathway in Fig. 1 is the result of aggregating knowledge from
nearly 35 different published articles. On average each biological pathway consists
of approximately 5-15 molecular species and approximately 10-25 molecular
interactions. The development of just this one biological pathway requires the
integrated effort of multiple laboratories, spread across the world to construct and
maintain. Elements of the biological pathway, the number of molecular species
and the types of interactions, are subject to change based on new experimental
results.

In summary, the development of each and every biological pathway is a highly
collaborative effort, requiring the aggregation and integration of numerous
experimental results, derived from the fundamental understanding of genes, pro-
teins, and protein—protein interactions. Moreover, such a development effort, as
will be discussed in forthcoming sections, is not linear, but cyclic, involving
constant updates and refinements to the biological pathway, based on new
experiments.

1.4 Systems Biology

Systems biology is a new field; however, building systems-level understanding of
biology is not a new phenomenon. Over 6,000 years ago, many traditional systems
of medicine including Siddha, Unani, Ayurveda and Traditional Chinese Medicine
(TCM) proposed systems approaches to describing the whole human physiome
[11, 12]. During modern times, starting in 1930s, with the concept of homeostasis
[13] and biological cybernetics [14] attempts were made to understand biology
from a systems level using the modern language of physics and control systems
theory.

The discovery of the structure of DNA in 1953 [15] combined with recent high-
throughput measurement techniques for imaging and quantifying molecular level
interactions has enabled a completely new field of biology: systems biology.
Systems biology aims to develop system-level understanding by connecting
knowledge at the molecular level to higher level biological functions [16]. Such a
goal was not possible before. Previous attempts at system-level approaches to
biology, whether ancient or modern, were primarily focused on the description and
analysis of biological systems, limited to the physiological level. Since these
approaches had little to no knowledge of how molecular interactions were linked
to biological functions, a systems biology of connecting molecular interactions to
biological functions was not previously possible. Systems biology, therefore, is a
new field of biology as it offers the opportunity, as never before in human history,
to link the behaviors of molecules to the characteristics of biological systems. This
new field will enable us to eventually describe cells, tissues, organs and human
beings within a consistent framework governed by the basic principles of physics
[17]. Systems biologists aim to link molecular-level interactions with cellular-level
functions through quantitative modeling.
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1.5 Biological Pathway Models

Over the past decade, new measurement techniques are enabling biologists to
quantify the molecular concentrations and rates of molecular interactions within
biological pathways. Such techniques are being used to transform diagrammatic
representations of biological pathways to build biological pathway models.

Systems biologists convert “ball and stick” diagrams to biological pathway
models, mathematical representations expressed in software program code along
with the inputs and data needed to run the model. Figure 2 illustrates the high-level
process by which a biological pathway is converted to a biological pathway model.
There are approximately 300 published biological pathway models today.

The software program source code of these models may be represented in
different formats: MATLAB, C++, C, SBML, CellML, etc. Different mathemat-
ical representations including ordinary differential equations (ODE’s), Boolean
Networks, Stochastic approaches, analytical functions, etc. are used to specify
these models. The internal parameters for these models, such as kinetic rate
constants, for example, are also determined through experimentation. Maintaining
just one biological pathway model is a complicated task since the biological
pathway models and the internal parameters are constantly updated based on
changes to the biological pathway diagrams (e.g. based on new experiments).
There are different emerging repositories for hosting biological pathway models
including BioModels.Net and CellML.Org [18, 19].

From these repositories, one can download a biological pathway models and
execute them on a local computer. Figure 2 illustrates the transformation of the
biological pathway diagram, on the left hand side, to a black box biological
pathway model, on right hand side. This black box has inputs, being the species
concentrations of the molecular species at time ¢ = n, and outputs being the
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Fig. 2 Systems biologists work to convert biological pathway diagrams to biological pathway
models
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Fig. 3 Results from the execution of the biological pathway model

species concentrations of the molecular species at time t = n 4 1. The internals of
the black box contain the software code and the mathematical representation. In
this case, the mathematical representation is an ODE and the software code is in
SBML. However, the mathematical representation and the software code could be
in any format as described earlier. Execution of this biological pathway model will
yield results as shown in Fig. 3.

The results in Fig. 3 are the time varying changes in species concentrations.
Along the x-axis is time and along the y-axis is the species concentration in nM
(nano-molar). Such a biological pathway model serves to provide a quantitative
and predictive capability to describe the interactions of five molecular species.
Each biological pathway model is treated as a black box, having a defined set of
input species and the same defined set of outputs, the values of which are the
species concentrations. The construction and validation of such biological pathway
models remains a tedious and time-consuming process mainly due to the experi-
mental effort required to determine the many internal parameter values.

Most biological pathway models are developed, used for a single application by
a single developer, and then forgotten. One can only imagine how many biological
pathway models, for example built in MATLAB, and never published are located
in some file folder, in some unknown computer, developed by some graduate
student. Therefore, considering all the hard work that goes into developing a
model, it is rather surprising that so little attention is paid to the presentation and
conservation of existing models [20].

Systems biologists are attempting to create reusable components of biological
pathway models by constructing online repositories to offer an archive and curated
repository. In addition to supporting the conversion of the diagrammatic repre-
sentation of biological pathways to biological pathway models, systems biologists
also aim to build larger biological pathway models by integrating smaller bio-
logical pathway models. The purpose of such effort is to gain new insights on
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cellular functions not possible from experimental research. Currently, there are
approximately 5-10 such integrated biological pathway models. There are three
main reasons why there are such a low number of integrated biological pathway
models.

First, the individual biological pathway models are in different formats. Second,
understanding any one model requires a great deal of domain specific knowledge
and expertise. Third, the primary method of integration involves merging the
source codes of each biological pathway model into one large source code.
Because of these reasons, it is very time-consuming and expensive to integrate
biological pathway models. Maintenance of the resulting integrated model is also
very difficult since the integrated model can become invalid as it has a “half-life.”
New proteins, protein—protein interactions and new parameters (e.g. rate constants)
in any one of the individual biological pathway models are being discovered and/
or updated constantly. Integrating models can also become especially difficult,
within the current method, if the source code for any one particular biological
pathway model is not publicly available. This would require one to recode that
entire model’s source code from scratch.

2 Motivation

Figure 4 illustrates the path to modeling the whole cell and summarizes the
concept from the previous sections.
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Fig. 4 Summary of the development path towards whole cell modeling
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This figure presents four major steps to modeling the cell. First, the under-
standing of genes and proteins are used to build an understanding of protein—
protein interactions. Second, these protein—protein interactions are networked to
create biological pathways. Third, the integration of biological pathways serves to
describe cellular functions. Fourth, and finally, the integration of cellular functions
serves to model the whole cell.

Currently, as shown in Fig. 4, there are only 5-10 such integrated models of
cellular function. It is expected that the number of biological pathway models,
currently numbering approximately 300, will grow; however, the step in devel-
oping larger integrated models is severely limited by the time consuming and
expensive effort, for the three reasons highlighted earlier. The discussion below
provides greater insights on the efforts needed to build biological pathway models.

2.1 Development of Biological Pathway Models

The process to create and maintain a particular biological pathway model is an
iterative process of manipulating, measuring, mining and modeling as shown in
Fig. 5. The two major areas are experimentation and modeling. Systematic
experiments involve manipulation and measurement. Manipulation involves
modifying an existing biological system. Measurement involves collection of data
from that manipulated biological system. Quantitative modeling involves both
mining and modeling. Mining enables the identification of underlying relationships
in large datasets.

These relationships can be used to create predictive mathematical models.
Biologists, working in highly domain specific areas, perform systematic experi-
ments, using a range of advanced measurement devices quantify the molecular
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Fig. 5 The four M’s of systems biology [87]
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Fig. 6 Scenario of three research teams performing systematic experiments to produce
biological pathway models, which are published and Complexity of Integrating Multiple
Biological Pathway Models

concentrations and dynamics of molecular interactions. Data mining and modeling
efforts are used to refine their conclusions. Biological pathway models are
developed and refined through this constant and arduous iterative process. The
World Wide Web (WWW) offers a vehicle for scientists to more easily share and
publish their biological pathway models. There are thousands of such biological
pathway models being published and refined each day by teams of biologists
worldwide. Figure 6, for example, illustrates three different research teams, spread
across the globe, performing the iterative process of systematic experiments and
modeling to produce biological pathways, which are made available and published
over the WWW.

Given the decentralized nature of these efforts, the source code of any one
biological pathway model may be written and stored in a variety of software
programming languages, may be publicly accessible or proprietary. A particular
source code is typically built and tested on a particular computer hardware plat-
form, and multiple teams may be involved in maintaining that one source code.

As the number of biological pathway models and our ability to accurately
model any one biological pathway model increases, the challenge becomes how to
integrate an ensemble of biological pathway models to build more complex models
of cellular function. As an aside, this term complex needs to be discussed prior to
proceeding. Any one biological pathway model within an integrated model may
contain hundreds of species and a set of hundreds of resulting mathematical
equations describing those interactions; however, this does not mean the model is
necessarily complex.

For example, on a personal computer, super computer or even powerful handheld
devices, hundreds of simultaneous differential equations can be solved; however,
this does not mean that the model we solve is complex just because it has many
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equations. A complex system, on the other hand, may be complex even if the
number of equations is small and apparently simple if the individual elements of the
system have their own unique dynamic behavior. Such a system is said to be
complex if it has multiple elements, which reveal different dynamic properties. This
may occur, for example, when all system elements are continuous with concentrated
parameters, but the model includes very fast and very slow parts [21]. Another
example is a system where discrete parts interact with continuous sub-models of
different speed and different kind such as an electronic circuit that contains inte-
grated circuits as well as electro-mechanical parts such as relays and motors [22]. In
other words, the model complexity has little to do with the model size.

Let us now consider a complex biological system: the interferon (IFN) response
to virus infection. This integrated system involves various biological pathways,
each of which is a unique domain of knowledge and effort for modeling. Figure 7
illustrates the four key biological pathways involved in this complex integrated
system. Different research teams worldwide develop each pathway. At the lower
left of this figure is the virus infection pathway. This biological pathway model
simulates the virus infection of a cell and results initially in the up regulation of
IFN-Beta, a critical signaling protein; and later on, results in the up regulation of
IFN-Alpha, another signaling protein.

A second biological pathway model is IFN receptor signaling, as shown in the
upper left. This biological pathway model represents the interactions of IFN
proteins, either IFN-Alpha or IFN-Beta, landing on cell receptors to trigger the
activation of other proteins within the cell’s cytoplasm to up regulate IRF-7, an
interferon regulatory factor. A third pathway is the IFN amplification cycle, as
shown in the upper right. This biological pathway model simulates the production
of increased amounts of both IFN-Alpha and IFN-Beta, which results from the
by-product of virus infection with IRF-7. A fourth pathway is SOCS1 regulation,
shown in the lower right. This pathway serves to regulate the production of IFNs
by inhibiting the IFN receptor-signaling pathway.

The ensemble of all of the biological pathways depicted in Fig. 7, if integrated,
can provide an integrative model of IFN response to virus infection. Each bio-
logical pathway is a contribution of different research teams across three conti-
nents of North America, Asia, Europe, and four countries: China, Russia, United
States and Japan. Any individual biological pathway model within this ensemble
does not have thousands of equations but the activity to integrate these four
models to create one new model is unequivocally a complex problem for a
number of reasons. First, based on the literature, not all of the biological pathway
models depicted in Fig. 7 have source codes for their models. Second, the bio-
logical pathway models were built using different software programming lan-
guages. Third, each team developed their biological pathway models on different
hardware platforms. Fourth, each of the biological pathway models exhibits dif-
ferent dynamic properties (e.g. different time scales). To integrate these four
models is a complex problem. Such a problem is representative of most cellular
functions that involve multiple biological pathways, which need to be connected
to build a larger model.
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Fig. 7 Scenario of scientists performing systematic experiments to produce biological pathway
models, which are published and made available over the WWW

2.2 Complexity of Maintaining an Integrated Model

The above discussion outlined the complexity of creating an integrative model of
cellular function from combining various biological pathway models. This com-
plexity is only one part of the problem. Another critical function is: the mainte-
nance of the resulting integrated model. In the scenario described in Fig. 7,
different teams worldwide develop each biological pathway model. Each team
provides a particular domain of knowledge. As discussed in a previous section, the
development of any one particular biological pathway model is an iterative process
of systematic experimentation combined with quantitative modeling, both sup-
porting each other. The reality is this: Any one biological pathway model is
constantly undergoing refinement.

This means that the maintenance of a combined set of biological pathway
models can be nearly impossible if there is no easy mechanism to receive and
incorporate the updates from each biological pathway model; otherwise, the
integrated model’s accuracy is only good as its latest update. Since each model is
developed in different mathematical and software representations, the integration
and maintenance is made even more complicated.

2.3 Integration of Biological Pathway Models

Thus far, we have used the term, integrated model without formally defining it.
Moving forward in our discussion, an integrated model refers to a group of
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biological pathway models executing together that have the ability to affect each
other’s computations. Based on the previous discussion, the question arises as to
how does one effectively integrate an ensemble of biological pathway models and
maintain them to ensure reliability.

One approach is to avoid the problem entirely and take a completely different
approach: develop from scratch an entirely new biological pathway model that
encompasses the multiple phenomena across each individual biological pathway
model. In essence, create one large biological pathway model. The time and
expense, however, involved in developing such a model is prohibitive. The design
and implementation of a model requires a combination of software engineering
skill and domain expertise. In addition, it involves an extensive amount of veri-
fication and validation, requiring the iterative process of systematic experimen-
tation and quantitative modeling as previously discussed.

Another approach is to acquire and reuse the source codes from each biological
pathway model, and merge them through some mechanism to create one large
biological pathway model. While this process may be appearing easier than the
previous one, it may not be so. The reuse of software is a key principle of software
engineering and is usually achieved by developing a set of simple components, or
modules that can be combined in different ways to create more complex com-
ponents. Ideally scientists would connect their biological pathway models by
integrating the existing source codes, treating them as modular pieces that can be
easily and quickly plugged together. This, however, can be a very difficult task
when the legacy source codes themselves may be poorly understood, and more
than likely, were not originally designed to be integrated, and may be written in
different software programming languages for different hardware computing
platforms.

Despite the potential benefit of building new models from existing ones, inte-
grating pathway models is not a common practice in systems biology community
because of the difficulties inherent in working with source codes. Reusing source
code in general is difficult for many reasons. Not only are programs difficult to
comprehend (a necessary part of any software reuse) but the task of identifying
useful source code fragments and integrating these source code artifacts that were
not designed for reuse is challenging [22-24]. This is especially true for source
codes written in unstructured languages and languages that make extensive use of
global data e.g. Fortran [22]. Reusing source code is particularly difficult because
biological pathway models are a unique class of computer programs whose design
and use is intertwined with a great deal of domain-level theory outside the model
code itself [25].

In short, the amount of time and expense required to understand the legacy
source codes of each individual biological pathway model, prior to merging them
may be more costly than starting from scratch. Moreover, once the integrated
model is created, the next problem becomes the complexity of maintaining the
resulting integrated model, since changes will no doubt take place in the origi-
nating biological pathway model’s source codes, as they are refined and enhanced,
through systematic experiments and modeling.
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Perhaps a better way is to integrate biological pathway models in a decen-
tralized manner such that the integrated model functions as one whole, while any
of its component biological pathway models can continue to be owned and
maintained by its original authors. If this approach is taken, effort will be required
to build a new messaging architecture that enables disparately produced biological
pathway models to interface, obviating the need to explicitly integrate the source
codes. Such an infrastructure would allow scientists to quickly prototype those
integrated models. This thesis is motivated to create such a computational
infrastructure to integrate biological pathway models.

2.4 Research Question

The above sections should have clarified to the reader that biology is fundamen-
tally an experimental science. The development and understanding of genes,
proteins, and protein—protein interactions, or just any one element along the path to
modeling the whole cell is difficult, time-consuming and complex, requiring the
collaborative effort of multiple teams of scientists worldwide. The question then
becomes: How can we build larger models from smaller models in a scalable
framework to support whole cell modeling given the reality of biology—an
experimental science?

3 Prior Work

Integrating biological pathway models is becoming an important area of research
for advancing the field of systems biology. In the next section, we review the key
factors that are driving this need and some recent efforts to create integrative
models of biological systems. In the third section, we survey general computa-
tional architectures for integrating models. The fourth section specifically surveys
the current approaches for integrating biological pathway models in the field of
systems biology. We conclude this chapter by summarizing the current approaches
in tabular form. We also provide a discussion on the critical weakness limiting the
integration of biological pathway models.

3.1 Movement to Integrate Biological Pathway Models

There is a worldwide movement in the computational systems biology community
to find powerful ways to integrate the growing number of biological pathway
models. This movement is being driven by a transition from diagrammatic
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representation of pathways to quantitative and predictive mathematical models,
which span time-scales, knowledge domains and spatial-scales [26-28]. This
transition is being accelerated by high-throughput experimentation which isolates
reactions and their corresponding rate constants [1]. Vast amounts of information
is now available at the level of genes, proteins, cells, tissues and organs, which
requires the development of mathematical models that can define the relationship
between structure and function at all levels of biological organization [29].

Systems biology aims to provide a comprehensive quantitative analysis of the
manner in which all the components of a biological system interact functionally
over time [30]. Such an objective is pursued by an interdisciplinary team of
investigators [31]. A significant computational challenge is how we can integrate
such sub-cellular models running on different types of algorithms to construct
higher order models [32].

Biological pathways, including metabolic pathways, protein interaction net-
works, signal transduction pathways, and gene regulatory networks, are
currently represented in over 220 diverse databases. These data are crucial for
the study of specific biological processes, including human diseases. Standard
exchange formats for pathway information, such as BioPAX, CellML, SBML
and PSI-MI, enable convenient collection of this data for biological research,
but mechanisms for common storage and communication are required [33].
However, one the greatest challenges in establishing this systems approach are
not biological but computational and organizational [34]. The critical need
across all domains of molecular and cell biology is to effectively integrate large
and disparate data sets [35].

Vigorous interest in understanding the dynamic aspects of cellular networks is
also another driver in the development of integrative techniques for biological
pathway models [36, 37]. Such explorations could provide insight into the
mechanisms of healthy and diseased cells, as well as a better understanding of how
system-level or whole-cell properties emerge from intracellular interactions of
molecular components [38]. Moreover, understanding dynamics at the global
network level seems to be now a reachable goal, which has motivated the growth
of systems biology. Also, it is commonly admitted that the study of the network
dynamics is able to enlighten the function of genes and groups of genes [39].

A central question now confronting virtually all fields of biology is whether
scientists can deduce from this torrent of molecular data how systems and whole
organisms work. All this information needs to be sifted, organized, compiled,
and—most importantly— connected in a way that enables researchers to make
predictions based on general principles [40]. Mapping protein interactions and
transactions (such as phosphorylation, ubiquitination, and degradation) within a
cell or organism is essential to developing a molecular understanding of physi-
ology. Over the past decade, protein interaction mapping has evolved from low
throughput manual screens to systematic interrogations of entire proteomes [41].
Reconstitution of biochemical and biophysical processes from ‘minimal systems’
of proteins has built confidence those top-down and bottom-up approaches to
biology meet somewhere in the middle.
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Systems biology has sought to integrate these results and data to reverse-
engineer an understanding of biological network function and dynamics. The
infrastructure for storing and disseminating information on biological systems, and
for modeling them, has grown concurrently. In turn, this allows the rapid access
and cross-comparison of information that is critical to establishing data quality and
creating interoperability standards that will enable biologists to leverage their
efforts and build scalable systems [42].

3.2 Existing Methods

Two critical elements need to be carefully assessed when selecting a modeling
approach for any dynamic system: (1) the level of abstraction and (2) the meth-
odology of implementation. In determining which level of abstraction and which
methodology of implementation to use, the notions of tractability, scalability and
accuracy are some of the important selection criteria, among others. Tractability is
measured by the time and expense needed to design, implement, and test and
assess the viability of the modeling approach. Scalability is determined by the ease
with which the modeling approach can integrate new components at a particular
level of abstraction. Accuracy is determined by the ability of the modeling
approach to yield results, which match that observed in nature. Different users of
the modeling approach will have these and other qualitative criteria in determining
which modeling approach are the most optimal for their particular needs.

Currently there are two existing methods towards building whole cell models.
The first method proposes to use first principles (ab initio) and large-scale com-
puting, as has been applied in other fields such as climatology, particle dynamics,
etc. to build a whole cell model. The second method involves downloading and
accessing existing models and manually integrating their source codes together by
hand to create one monolithic software program: the monolithic approach.
A variation on this approach is to use semi-automation tools that help one to
automatically read and integrate source codes together to create one monolithic
software program.

3.3 First Principles—Ab Initio

There are various choices for which level of abstraction to use in modeling the
cell. In Fig. 8 four potential abstractions are illustrated: quantum, atomic, bio-
logical pathways, and organelles. In the first principles approach, one could start at
the atomic level of abstraction and solve the time-dependent Schroedinger equa-
tion (quantum mechanics, QM) to quantify the dynamics of the whole cell [43].
Such an approach would lead to a detailed understanding of the role that atomic
level interactions play in determining the fundamental biochemistry of the whole
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Fig. 8 Various levels of abstraction in modeling the whole cell

cell. The difficulty in using QM, for example, is that the vast range of length and
time scales, from a nitrous oxide molecule to an organelle, makes the QM solution
both impractical and useless [43].

It is impractical since there are too many degrees of freedom describing the
motions of the electrons and atoms, whereas in the functioning of a cell it may
only be the rate of transfer across some membrane. The complexity of QM limits
its applications to systems with only 10-200 atoms (depending on the accuracy),
leading to distance scales of less than 20 Angstroms and time scales of femtose-
conds. Even the simplest protein in the cell contains over 1000 atoms. While the
atomic level abstraction offers high level of accuracy, the level of abstraction is
not scalable as the addition of each new atom increases the computational needs
exponentially. This potential solution is also impossible, today, as the computing
power needed to model the cell using this level of abstraction does not exist.

The first principle method therefore attempts to leap frog some of the steps in
modeling the cell by using the laws of physics to model the cell versus experi-
ments, which are the basis of biology. Another choice of abstraction in using the
first principles method is at the molecular level, where Newton’s equations are
used rather than Schroedinger’s to model molecular dynamics (or MD). Where in
QM the solution is determined by averaging over the scale of electrons to describe
the forces on atoms, in molecular dynamics (MD), one calculates an average over
the dynamics of atoms to describe the motion of large molecules. While MD
provides the ability to predict the dynamic interaction of molecules ab initio in an
accurate manner, this level of abstraction is neither tractable nor scalable for
modeling the whole cell since biological molecules such as proteins have far more
atoms, degrees of freedom and numbers of states not encountered in other engi-
neering fields where the species and interactions are well-defined [44]. We con-
sider the simple problem of modeling the interaction of two proteins to
demonstrate the intractability of using MD for whole cell modeling.
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Consider the interaction of two proteins A and B to form the complex AB. We
assume that each protein has 100 amino acid residues and each residue has three
states (e.g. alpha, beta and other). In MD to model this simple interaction, two key
calculations need to take place: 1. Thermodynamic, and 2. Kinetic in order to find
the most likely transition state of protein A and protein B combining to produce
complex AB [45]. For the thermodynamic calculations, MD requires the calcu-
lation of thermodynamic properties such as entropy which requires the need to
evaluate all the possible states and associated probabilities of protein A, protein B
and the complex AB. Protein A will have 3'°° possible states (100 residues, each
of which can be in three possible states), protein B will have 3'% possible states,
and the complex AB can have up to 3°%° (since AB is a combination of A and B)
possible states. Just performing this calculation to determine the states and asso-
ciated probabilities using modern computers is impossible and therefore
intractable.

The kinetic calculation requires the identification of an appropriate reaction
coordinate by computing the relative energies (or probabilities) for all the con-
formations along this reaction coordinate. In this case, it will require determining
all the possible conformations of A and B that are at the energy of the activated
complex, denoted by A’ and B’, (a higher energy than the energy of A and B); then
determining all the possible conformations of A and B within complex AB stage,
denoted by A’ and B’’, (at an energy lower than that of A and B); and then finally
determining all the conformations of AB complex. The kinetic calculation then
attempts to link the most probable conformations starting with A and B, then A’
and B’, then A’ and B’’, and finally the AB complex to calculate the reaction
coordinate. These sets of multiple calculations using atom-by-atom MD to
determine the reaction coordinate to solve even the simple molecular interaction of
two proteins is intractable using modern day computers [45]. Moreover, this level
of abstraction is not scalable as the number of interactions, number of proteins, and
number of atoms per protein increases. In summary, while MD has powerful
applications for determining protein conformations, it is not viable for whole cell
modeling where hundreds of thousands of proteins are involved in millions of
molecular interactions. Therefore, neither QM nor MD, using the laws of physics,
offers tractable approaches to modeling the whole cell.

3.4 Biological Pathways as Modules

Another approach towards modeling the cell is to consider biological pathways as
being the elemental modules from which complex cellular functions and the whole
cell can be modeled. In this section, we present various viewpoints in the existing
literature that supports such an approach. Biological systems are thought to have
large number of parts almost all of which are related in complex ways [46].
Functionality emerges as the result of interactions between many proteins relating
to each other in multiple cascades and in interaction with the cellular environment.
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By computing these interactions, it can be used to determine the logic of healthy
and diseased states [47]. One way to model the whole cell is through bottom up
reconstruction. Such bottom up reconstruction, for example, of the human
metabolic network was done primarily through a manual process of integrating
databases and pathway models [48].

It is possible, for example, to regard signaling networks as systems that decode
complex inputs in time, space and chemistry into combinatorial output patterns of
signaling activity [49]. By treating biological pathways as modules our minds can
still deal with the complexity. In this way, accurate experimentation and detailed
modeling of network behavior in terms of molecular properties can reinforce each
other [50]. The goal then becomes that of linking kinetic models on small parts to
build larger models to form detailed kinetic models of larger chunks of metabo-
lism, and ultimately of the entire living cell [20]. The value for integrating
pathways is that it was found that the integrated network shows emergent prop-
erties that the individual pathways do not possess, like extended signal duration,
activation of feedback loops, thresholds for biological effects, or a multitude of
signal outputs [51]. In this sense, a cell can be seen as an adaptive autonomous
agent or as a society of such agents, where each can exhibit a particular behavior
depending on its cognitive capabilities.

Unique mathematical frameworks will be needed to obtain an integrated per-
spective on these complex systems, which operate over wide length and time
scales. These may involve a two-level hierarchical approach wherein the overall
signaling network is modeled in terms of effective “circuit” or “algorithm”
modules, and then each module is correspondingly modeled with more detailed
incorporation of its actual underlying biochemical/biophysical molecular interac-
tions [52]. The mammalian cell may be considered as a central signaling network
connected to various cellular machines that are responsible for phenotypic func-
tions. Cellular machines such as transcriptional, translational, motility, and
secretory machinery can be represented as sets of interacting components that form
functional local networks [53].

As biology begins to move into the ‘‘postgenomic’’ era, a key emerging
question is how to approach the understanding of how complex biological path-
ways function as dynamical systems. Prominent examples include multi-molecular
protein ‘‘machines,”’ intracellular signal transduction cascades, and cell—cell
communication mechanisms. As the proportion of identified components involved
in any of these pathways continues to increase, in certain instances already
asymptotically, the daunting challenge of developing useful models—mathemat-
ical as well as conceptual—for how they work is drawing interest [54].

Multi-scale modeling is essential to integrating knowledge of human
physiology starting from genomics, molecular biology, and the environment
through the levels of cells, tissues, and organs all the way to integrated systems
behavior. The lowest levels concern biophysical and biochemical events. The
higher levels of organization in tissues, organs, and organism are complex,
representing the dynamically varying behavior of billions of cells interacting
together [55]. Biological pathways can be seen to share structural principles
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with engineered networks, along with three of the most important shared
principles, modularity, robustness to component tolerances, and use of recurring
circuit elements. [56].

An important attribute of the complexity pyramid is the gradual transition from
the particular (at the bottom level) to the universal (at the apex) [57, 58]. Others
have recognized that one can build cellular-like structures from a bottom up
approach [59]. Integrated models would represent the most compact, unambiguous
and unified form of biological hypotheses, and as such they could be used to
quantitatively explore interrelationships at both the molecular and cellular levels.
[60]. At this time, for instance, the computational function of many of the sig-
naling networks is poorly understood. However, it is clear that it is possible to
construct a huge variety of control and computational circuits, both analog and
digital from combinations of the cascade cycle [61].

3.5 Integrative Modeling Efforts

As discussed in the previous section, systems biology is determined to find new
ways to integrate biological pathway models to build larger systems. Neurosci-
ence, for example, seeks such integration of computational models for better
understanding of different signaling pathways in neurons [62].

In the area of metabolism, researchers have created comprehensive mathe-
matical descriptions of the cellular response of yeast to hyperosmotic shock. Their
model integrates a biochemical reaction network comprising receptor stimulation,
mitogen-activated protein kinase cascade dynamics, activation of gene expression
and adaptation of cellular metabolism with a thermodynamic description of vol-
ume regulation and osmotic pressure [63].

The ITUPS Physiome Project is an international collaborative open source pro-
ject intended to provide a public domain framework for computational physiology,
including the development of modeling standards, computational tools and web-
accessible databases of models of structure and function at all spatial scales and
across all organ systems [64].

For the first time, kinetic information from the literature was collected and used
to construct integrative dynamical mathematical models of sphingolipid metabo-
lism [65]. In another example, a model of 545 components (nodes) and 1259
interactions representing signaling pathways and cellular machines in the hippo-
campal CA1l neuron were combined. Using graph theory methods, this effort
analyzed ligand-induced signal flow through the system. Specification of input and
output nodes allowed them to identify functional modules. Networking resulted in
the emergence of regulatory motifs, such as positive and negative feedback and
feed-forward loops, that process information [53].

Oda et al. [66] have developed a complete map of the macrophage pathway.
In this example, 234 published manuscripts were reviewed and 506 reactions
were integrated within the single centralized software framework of Cell
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Designer [67]. No models were integrated in this case; rather the work produced
a large and complex monolithic diagram interconnecting the various biological
pathways.

These examples demonstrate current efforts to integrate models to gain greater
insight into a particular area of biology. The results seem promising, and such
efforts are only growing. There is an also an equally growing need for foundational
tools and architectures that support the continued development of such integrated
models in a far more scalable manner. This has led to the development of many
new tools such as Cell Designer, which aim to offer an easy-to-use interface for
linking biological pathway models. In the next sections, we first survey general
techniques that are used for integrating such models in order to gain a perspective
for reviewing the more specific techniques in computational systems biology.

3.6 Generalized Architectures for Integrating Models

There are computationally two broad approaches to integrating multiple models:
monolithic and messaging. The monolithic approach involves the creation of one
monolithic source code resulting from the merger of the source code of the
individual models. The messaging approach involves the need for no such merger,
but creates a mechanism by which the necessary input and output data streams
common across all models can be shared and transferred either statically or
dynamically. Some have referred to this messaging approach as a communica-
tionsapproach [22].

3.6.1 Monolithic Approach

There are three broad types of monolithic approaches for integrating models:
manual, semi-automated and module-based.

Manual Monolithic Approach

The manual monolithic approach is process where the model integrator manually
creates a single program or “file” by “cutting and pasting” the source codes or
“wiring together” the pathway diagrams of individual models. Figure 9, illustrates
the cutting and pasting of source codes from two biological pathway models
Model A and Model B to produce Model C. A model integrator may alternatively
wire together the pathway diagrams of two pathway models to produce a single
pathway diagram using a visual design tool. Many find the manual monolithic
approach easy to use. It offers full control to the model integrator of the source
codes or pathway diagrams. (Fig. 10)
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Fig. 9 Monolithic approach of cutting and pasting source codes of two models: Model A and
Model B to produce a new source code of Model C

Model C

Model A Model B

Fig. 10 Monolithic approach of wiring the pathway diagrams of two models: Model A and
Model B to produce a new pathway diagram of Model C

The model integrator has control of all the coding details (control structure,
memory allocation, data types, input/output file formats, etc.) [22]. Although this
approach works, it has significant drawbacks. The individual performing the
integration needs a complete and detailed understanding of the constituent models.
In many cases, the source code is often difficult to obtain since legacy model codes
are frequently complex, uncommented, and poorly documented [22]. The single
integrated model’s source code is also difficult to work with from a software
engineering point of view (testing, debugging, verifying, updating, etc.) since it is
much larger than its constituent model source codes, and improvements made to
the original model source codes must be repeatedly made to each integrated
model’s source code as well.
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Fig. 11 An example of integrating models using the monolithic approach to integrate a model
for the cellular function of osmoregulation [63]

Examples of recent published papers in using this monolithic approach are
shown in Figs. 11 and 12. In Fig. 11 four models are integrated to produce on
monolithic model for modeling the cellular function of osmoregulation [63]. In
Fig. 12, three existing kinetic models are linked with one focusing on yeast gly-
colysis, a second extending this glycolytic pathway to the glycerol branch, and a
third model introducing the glyoxalase pathway [20].

Semi-Automated Monolithic Approach

The semi-automated approach is a slight variation of the manual monolithic
approach. In the semi-automated monolithic approach, software tools are used to
accelerate the development of a single program from the individual model’s source
codes. In these approaches, a software tool, as illustrated in Fig. 13, combines
together source codes or diagrams using some additional information to produce a
single source code or diagram. Rarely do these tools produce the right source code,
the first time. There is always manual intervention to review the initially produced
output and then perform manual manipulations to produce the final output.

This semi-automated monolithic approach has the advantage of speeding up
the initial merger process of source codes; however, the result varies based on
the kind of semi-automation tool being used. In some cases, more effort is spent
trying to get the tool itself working properly. Although this approach works, it
too has the same significant drawbacks as the manual monolithic approach. One
example of such a tool, SBMLMerge, is shown in Fig. 14 [68]. This tool merges
two biological pathway models to produce one biological pathway model.
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Fig. 13 Semi-automated monolithic approach of wiring the pathway diagrams of two models:
Model A and Model B to produce a new pathway diagram of Model C
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Fig. 14 SBMLMerge is an example of a tool that takes two biological pathway models and
produces a merged model in a monolithic format [68]

For this tool to operate both biological pathway models need to be in SBML
format and the tool produces one monolithic source code of the merged model in
SBML format.

While these semi-automated tools may speed up the process, one disadvantage
is that the model integrator does not have as much control of the resulting inte-
grated source code, as they had in the manual approach. Some semi-automated
tools insert new proprietary code and data structures along with a new format,
which may take time to understand and debug. The model integrator, in that event,
needs to not only have a complete and detailed understanding of the constituent
models and their source code, as in the monolithic approach, but also now needs to
understand how the tool for semi-automation itself works.

Module Based Monolithic Approach

The module-based monolithic approach addresses some of the limitations and
drawbacks of the manual and semi-automated monolithic approaches. This
approach offers the ability to employ reusable techniques for integrating models.
The module-based monolithic approach results in the creation of single set of
source code, but differs in that rather than decompose each model’s source codes
into blocks of source code designed for integration into another specific model’s
source code, the scientist decomposes each model’s source code into software
modules.

Modules are subroutines that are reusable and can be written with little
knowledge of the other modules, and they can be replaced independently without
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significant changes to the rest of the program [22]. We use the term reusable to
mean that a module can be used in a variety of different situations without any
changes made to it. Each module possesses a standard interface for invoking and
passing parameters. Connecting their interfaces then recomposes the modules. The
interfaces for each module are generally simple and consist of a set of input data
that must be supplied before the module can be executed, and a set of output data
that is available upon completion [22]. The computation that a module performs is
encapsulated and hidden within the module. These modules can be classified and
organized into searchable libraries and the strict interfaces allow for automatic
compatibility checking.

3.6.2 Messaging Approach

Due to the limitations of the monolithic approaches, scientists turned to approa-
ches that obviate the need to produce either manually, semi-automated manually or
even programmatically, one source code from the combined models and approa-
ches that require a substantial programming. This led to the messaging approach.
There are two types of messaging approaches: static and dynamic.

Static Messaging Approach

In the static messaging approach, the models remain independent programs and do
not affect each other as they are executing. Any one model accepts as input a
dataset, which may reside in any variety of formats, and executes to completion to
generate an output dataset. That output dataset is then given to another model
(perhaps after some transformation) which that model uses it as input and also
executes through to completion. This process can then be continued with other
models, and they can be executed concurrently if there are no dependencies
between their datasets.

Architectures for supporting static messaging architectures offer tools that
provide automated ways for the user to select models and datasets, and then
specify the distribution of datasets [22]. For example, in one such architecture,
called Le Select, a database-oriented approach is used in which both models and
datasets are stored in geographically distributed databases and the user specifies
the execution and data distribution through textual queries in a standard database
query language [22]. Other architectures provide a visual interface to specify the
order of execution of the models [69, 70]. These architectures typically have
different user interfaces and different input/output data formats making them
difficult to use, especially for non-specialists, requiring a significant investment of
time to learn.

Some architectures provide a standard user interface to each model [71]. This
requires that the original user interface source code be removed from each model
and replaced with the common user interface source code. To address the issue
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of non-uniform data input and output formats, some architectures require the user
to perform this data transformation manually between model runs while others
require the user to change the model codes so that they use a standard data format
[69, 70]. This requires that all the input and output source code be removed and
replaced with source code to access the common database and use its data types.

Dynamic Messaging Approach

Using the dynamic messaging approach, the underlying model’s source codes
remain independently executing programs that interact only by exchanging data
via message passing during execution. Architectures that use this approach can be
classified by whether or not they include an independent application (a controller)
that mediates the execution and messaging between the models.

The primary role of the controller is to transform exchanged data, which typ-
ically involves data type conversions, but they also sometimes control the startup
of the models or track the global state of the integrated model as well. Archi-
tectures that do not include a controller are essentially libraries of data transfer and
transformation routines customized for the data types and messaging styles needed
by models. Architectures that do include a controller have messaging libraries that
support direct model-to-model messaging as well as model-to controller messag-
ing. In either case, these libraries often require the scientist to convert the model
data into a standard data type, which is then communicated. All of these archi-
tectures require the scientist to perform an initial exercise of creating some
mechanism of interfacing with each model through library calls in order to send or
receive data.

The user then writes configuration files that specify which models are to exe-
cute, and the data that are to be sent and received. The messaging approach avoids
the substantial model code rewriting required by the monolithic approaches, but
the user still needs a complete and detailed understanding of the model codes in
order to properly set up the correct interfacing for them [22].

In systems biology, for example, if one biological pathway model is written in
MATLAB, and other model is in SBML, with each sharing four common variables
that need to be communicated to solve the integrated problem, then the interface
code is developed for the MATLAB model and for the SBML model. Once this
interface code is written, both can transfer data. This interfacing process is often
specific to a specific type of integration, so the interfacing process has to be
repeated for each different type of interfacing.

4 Approaches to Integrating Biological Pathway Models

In this section, we will review current approaches to integrating biological pathway
models within the field of systems biology. Two developments are predominant
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in addressing this integration problem: (1) the development of new software
systems that allow the integration of multiple biological pathway models within a
single centralized software framework, and (2) the development of common
standards to define and code biological pathway models.

4.1 Software Systems for Integrating Biological Pathways

As discussed in the previous section on Generalized Architectures for Integrating
Models, there are two broad classifications for approaches to performing such
model integration: monolithic and messaging.

In systems biology, we propose another dimension of classification: informa-
tional and computational. Informational approaches are those that provide a way
for integrating multiple sources of biological pathway information but do no
computing with that integrated information. Computational approaches are those
that are a superset of informational architectures by also provide the ability to
perform integrated computations across the biological pathways. In the diagram
below, we review the predominant software systems for integrating biological
pathways and characterize them in this two-dimensional context of monolithic
versus messaging and informational versus computational.

In the previous sections, we have surveyed a number of different architectures
that can be used for integrating biological pathway models. In Table 1, we sum-
marize these extant approaches based on our two-dimensional classification

Table 1 Summary of

. . . Architecture Monolithic/messaging Informational/
architectures for integrating Computational
biological pathways - — -

Virtual CELL Monolithic (manual) Computational
Kinetikit/Genesis Monolithic (manual) Computational
Cell Designer Monolithic (manual) Computational
Jarnac/JDesigner Monolithic (manual) Computational
JSim Monolithic (manual) Computational
E-CELL Monolithic (manual) Computational
Gepasi Monolithic (manual) Computational
Jarnac Monolithic (manual) Computational
StochSim Monolithic (manual) Computational
PathSys Messaging (static) Informational

SBMLMerge Monolithic (semi-automated) Computational
CellAK Messaging (module-based)  Computational
Cellulat Messaging (module-based) =~ Computational
Cellware Monolithic (module-based) = Computational
SigPath Messaging (static) Informational

Gaggle Messaging (dynamic) Informational

XPAUT Monolithic (manual) Computational

MATLAB Monolithic (module-based)  Computational
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methodology from the previous section. The 18 architectures summarized in
Table 1 represent those architectures that support the integration of multiple
biological pathway models. As noted earlier, some of these architectures support
the integration of biological pathway model information but do not support the
computing of the integrated models.

Most of the approaches are monolithic. Clearly within the monolithic approach,
the module-based mechanism is an ideal way to construct new models if modules
are available, but the approach is impractical for integrating existing models.
Cellware and MATLAB offer a module-based monolithic approach; however, they
are very difficult to perform the actual programming for this kind of application for
a non-specialist, have a significant learning curve, and cannot produce code that is
scalable. What is interesting to note; however, is that the most widely use archi-
tectures in the systems biology community is the monolithic approach.

The messaging approach allows existing models to be integrated with minimal
changes to the model’s source codes. Since we are interested in model reuse and
scalability, we will focus on the messaging approach in this work. Moreover, we
will ignore those architecture that are only informational for obvious reasons,
since the do not support computation.

Based on Table 1, there are only two messaging-style architectures in the
current systems biology community: CellAK and Cellulat. These two architectures
offer an approach that lets biological pathway models be integrated without the
need to explicitly integrate the source codes as in the monolithic approach. Neither
of these approaches, however, performs dynamic messaging among the integrated
models, which would be even more advantageous.

4.2 Weakness of the Current Approaches

As can be seen from the previous discussion, the predominant method for per-
forming such integration is a monolithic approach, which involves creating one
large biological pathway model through either a manual, semi-automated or
module-based method that executes on a single computer.

There are many weaknesses, which make this approach not scalable. First,
scaling to, for example, approximately 1,000 pathways—the level required to
describe a single cell—would require a massive effort beyond the research and
development expended to obtain the original individual pathways [72]. Second,
each pathway represents a knowledge domain, and it would be essentially
impossible to have one person sufficiently knowledgeable in all the scientific areas
to understand each of these domains well enough to manually construct a single
monolithic program.

Third, the monolithic approach does not provide a means for pathways from
proprietary models to be used with other models that are open source. The
monolithic approach wrongly assumes that the owners of any one model will be
freely willing to share their models directly and will not protect proprietary
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information. The reality is that some models may be public and others, say ones
owned by a pharmaceutical company may be private.

Fourth, most monolithic approaches support only one standard format. This
means all other models need to be converted to that standard format. Fifth, and
related to the previous weaknesses, the monolithic approach wrongly assumes that
all models within an ensemble to be integrated are in the same format. The reality
is that, while standards efforts are underway, models are coded in software plat-
forms convenient to the author; and more practically any one platform is not
capable of modeling all biological pathways. In the [66] example, all pathways had
to be constructed in SBML and the integration had to be performed within the
centralized framework of Cell Designer. Thus, this monolithic approach demands
that in order to model the whole cell, all pathways would have to be placed into
SBML or one common standard and then integrated within the framework of a
centralized software system such as Cell Designer. Given the reality of standards
adoption as aforementioned and the existence of 136 different software systems
such as Cell Designer, a monolithic approach does not provide a scalable method
to integrate multiple biological pathways to model the whole cell.

Sixth, the monolithic approach also wrongly assumes that all the models will
run on the same computer and/or the same hardware platform. Different models
may run on only certain hardware platforms, and more than likely were optimized
and tested to run on particular hardware systems. This will become more important
as the size and complexity increase, and special coding and computational
accelerators are used to control the computational time.

Seventh, the monolithic approach assumes that all models reside in the same
geographical location and ignores that biologists, even in a particular domain area
of research such as immune response or cell motility, are distributed across lab-
oratories worldwide. While they may build models within the same software
platform and on the same hardware environment, the models themselves may be
resident at a completely different location.

Eighth, the monolithic approach offers no real viable or practical mechanism to
maintain the single large body of software code emerging from the merger of the
software codes of the individual models. Consider four individual models that
have been merged using the monolithic approach, and consider what process
the author of the monolithic model will need to employ to track and maintain
updates and changes to any of the four individual models. To any experienced
software development manager, this is known as a change management nightmare.
The reality is that any model may change constantly due to any one of several
reasons including new advances in measurement, corrections to rate constants or
identification of new species in a particular pathway.

Ninth, the monolithic approach, since it is centrally managed and maintained,
places a new burden on the authors of the integrated model: that they become
experts in the multiple domains represented by the individual pathway domains
that were merged. This is nearly impossible.

Tenth and finally, many of the monolithic approaches attempt to enforce
“standards” as a way to further reinforce a “monotheism”. This centralized
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approach that would not fare well compared with more democratic, community-
based approaches that understand and include research-driven development
efforts. Creating a rigid standard before a field has matured can result in a failed
and unused standard, in the best of circumstances, and, in the worst, can have the
effect of stifling innovation [73].

4.3 What is Necessary?

What is needed is a method that directly addresses this integration and scalability
problem by providing a parallel and distributed architecture allowing any indi-
vidual pathway model to exist in any format and across different computers. Such
a method would obviate the need to manually load, understand and interconnect
each individual pathway, as is required in monolithic systems. It is clear from the
above literature review, the common approach today is a monolithic approach in
which computational biologists seeking to create an integrate model “cut and
paste” source codes to create on monolithic model.

More specifically, of the two recent papers that provide examples of integrating
biological pathway models, both involve the merging of SBML models using a
manual monolithic approach [20, 63]. Thus, from a short-term perspective, even an
architecture, which allows the integration of distributed SBML models, would be
of huge benefit. SBMLMerge offers a tool that is a semi-automated monolithic
approach, while valuable for those seeking to “cut and paste” models faster, it is
not a scalable solution, since the resulting code base still cannot be maintained as
the models change overtime, requiring re-integration each time every time the
elemental models change.

A more advantageous solution would be an architecture that could, with min-
imal effort and no programming, connect or couple the codes of multiple SMBL
models, linking their computations. Such a tool would be of immense benefit. If
this same architecture could allow for the integration of models also not written in
SBML, but in any other format, it will accelerate the development of complex
models, versus waiting for all extant models to be converted and curated in SBML.
This too will be particularly useful, given the reality that most of the encoded
models available in scientific publications or on the Internet are not in a standard
format. Of those that are encoded in a standard format, it turns out that most
actually fail compliance tests developed for these standards [74]. In fact markup
languages for model encoding such as SBML may not be always the only way for
modeling biological pathway models, there are others that provide a range of
descriptive and analytical powers. As the field matures, there will be a wider
uptake of these alternative approaches for several reasons, including the need to
take into account the great complexity of cellular organization [75].

From a software engineering perspective, each biological pathway model rep-
resents an individual software program, each with different inputs and outputs,
written in different programming languages, by different developers, potentially
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distributed worldwide. Modeling the whole cell, therefore, can be likened to a
large-scale systems integration problem.

The research goal of this effort, therefore, is to develop a new approach to
integrate biological pathway models that overcomes the intractability and lack of
scalability of existing approaches. In his seminal work, [76] has demonstrated that
the amount of effort to develop such a large-scale system increases exponentially
with the amount of additional personnel communications required to coordinate
development personnel. The thesis will explore a method that resolves this bot-
tleneck in personnel communications by allowing individual teams to own and
manage their own pathway models without being involved in a massive project
management effort to coordinate the integration.

5 The Platform

This section presents the platform and scalable architecture for integrating bio-
logical pathway models. This architecture is called CytoSolve.

5.1 Key Requirements

Ten key requirements are identified below to address the weaknesses of previous
approaches.

5.1.1 Scalability

If the goal is to model complex cellular systems and eventually the whole cell, the
architecture must be able to integrate new pathway models with the same ease as it
is to integrate the first one. Scalability is measured by the ease in which additional
models can be integrated. Recall that complexity of integration, from our earlier
discussion, has little to do with the number of equations in any one model. Two
models with numerous equations can be relatively easy to integrate if they are
written in the same program, same time scales, in the same domain and developed
on the same hardware platform.

5.1.2 Opacity of Multiple Knowledge Domains

The architecture must express the property of opacity. Opacity means that when one
individual is integrating a particular pathway model into a pre-existing ensemble of
integrated models, one should not have to know the details and inner workings of all
other pathway models. Each pathway may represent a unique knowledge domain,
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and it would be essentially impossible to have one person sufficiently knowl-
edgeable in all the scientific areas to understand each of the domains.

5.1.3 Support for both Public and Proprietary Models

The architecture must support both Public models (models where the source code
is readable and available to all) and Proprietary models (models where the source
code is inaccessible). The monolithic approach does not provide a means for
pathways from proprietary models to be used with other models that are open
source. Many pharmaceutical companies, for example, will not want to share the
inner source code of their particular proprietary models; however, they are
interested in coupling their models with other models to gain better understanding
of a larger cellular process. Alternatively, researchers in the academic environment
may wish to integrate their Public models with existing Proprietary models to learn
some new aspect of science, but cannot currently due to confidentiality issues. By
enabling a way to ensure protection of the source code of those Proprietary
models, new industry and academic collaborations will be possible with far greater
ease. Those with Proprietary models currently chose either not to follow standards
to protect their models or if they do follow standards are unwilling to share their
model code, which was the reason for the standard itself.

5.1.4 Support for Multiple “Standards”

The architecture must support any pathway model code in any format or “stan-
dard.” While the architecture should support the integration of pathway models
constructed in a standard such as SBML, for example, it should be able to com-
municate with models in any format.

5.1.5 Heterogeneity of Integration

At any time models may be in different formats. The architecture should support
the ability to integrate, in real-time, models that are in different formats. Thus, if
there are three models, even if one model is in SBML, another in MATLAB and a
third in FORTRAN, the architecture should be able to integrate them with minimal
to no effort.

5.1.6 Cross Platform Support
The architecture should allow models developed on different hardware and

computing environments to be integrated with ease. Different models may run on
only certain hardware platforms and more than likely were optimized and tested to
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run on a particular hardware system. It will be far easier to keep a model resident
on a hardware platform for which it was designed and tested for versus having to
recode or reconfigure it in any manner to a new hardware platform, which could
prove to be very expensive and time-consuming.

5.1.7 Independence of Location

The architecture should support integration of models across geographical
boundaries. While each model may be on different computers, they may also be
physically at different locations anywhere in the world. The model should support
protocols for communicating with models anywhere without regard to geograph-
ical location.

5.1.8 Ease of Maintenance

Any model integrated within the architecture should be able to dynamically
change with little to no source re-coding efforts to incorporate changes for that
model into the larger integrated model. In the monolithic approach, any change to
an individual model typically requires significant recoding and retesting of the
integrated model. In this new architecture, we want to avoid such a process. This
requirement is extremely important to create a scalable architecture. The addition
of new models should not require changes to any of the other existing models.

5.1.9 Decentralized Management and Distributed Control

Decentralized management and distributed control means that each model is
maintained at the “local” level, not at a central level. The current monolithic
approach requires centralized model curation, such as many of the existing model
repositories. We want to support local management of models. Moreover, any
creator of a model should be able to integrate their model from their local location
to an ensemble of distributed models. This means that if one owner of a model has
Model A and wishes to quickly test or integrate their model with a set of three
other models: Model B, C and D. They should not have to download each of the
other models to their local computer. With ease, the architecture should enable the
owner of Model A to integrate with the other three models with little to no effort.

5.1.10 Hierarchical Support
Biological systems are systems of systems. This means that the architecture should

support the ability for systems to be composed of other systems, while ensuring
that each system satisfies the requirements herein.
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Fig. 15 A cell as an interconnection of biological pathways

5.2 Functional Specification

The above ten requirements will be used as the basis for defining the architectural
design. We begin our functional specification process by abstracting the cell to be
interconnection of biological pathways, as shown in Fig. 15. In this approach, we
make the following key assumptions:

1.

The cell or compartment is well-mixed. This means that a sufficiently long-time
between reaction collisions takes place to ensure that each pair of molecules is
equally likely to be the next to collide. This also means that the concentration of
each species is high and transport essentially instantaneous.

The progress of the system only depends on previous state (e.g. Markov
process).

. Between cells and compartments, transport is slower and associated with an

observable rate.

. We treat each pathway model as a black box. This means the following:

Inputs and outputs are species concentrations

Changes in localization are represented by compartments
Species are defined by their compartments

Species can move through compartments

Species can inhabit one or more compartments

5. The cell can be modeled as an integration of biological pathway models. Recall,

biological pathways are moving from diagrammatic representations, as shown
in Fig. 2 above, to biological pathway models, and each biological pathway
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model has internal parameters along with inputs and outputs which are the
molecular species concentrations for the nth and (n 4+ 1)th time step,
respectively.

6. The cell can be modeled as an integration of biological pathway models. Recall,
biological pathways are moving from diagrammatic representations, as shown
in Fig. 2 above, to biological pathway models, and each biological pathway
model has internal parameters along with inputs and outputs which are the
molecular species concentrations for the nth and (n + 1)th time step,
respectively.

Thus, modeling the cell therefore can be seen as an interconnection of bio-
logical of pathway models as shown in Fig. 15.

5.3 Platform Design

Based on the earlier discussions, it is clear that the monolithic approach is widely
used primarily because there are no other real alternatives in systems biology
today. The main problems with this approach have already been discussed. The
messaging approach, which has not been fully developed for systems biology,
except in the two cases of Cellware and Cellulata, is in the right direction.
However, both of these methods use a static messaging approach. There are no
known solutions, to our knowledge, which use a dynamic messaging approach that
supports scalability as well as ease of maintenance. Our first decision is to pursue a
dynamic messaging approach as the basis of the architecture. This dynamic
messaging approach provides nearly all of the advantages to address the weak-
nesses of the monolithic approach and the static messaging approach, for the
reasons previously stated.

5.3.1 CytoSolve: A Dynamic Messaging Approach

Based on the above discussion, we now introduce CytoSolve, a scalable archi-
tecture for integrating an ensemble of distributed biological pathway models. In
Fig. 16 the layout of the architecture for supporting a dynamic messaging
approach is illustrated. The layout of this architecture will meet all of the
requirements of the specifications outlined in the previous sections.

The elements of this architecture are:

e Biological Pathway Models—These are the boxes with the input and output
arrows along the outer edges of the diagram. Each biological pathway model is a
computer software program.

o Internet—This is represented by the internet “clouds”. This serves to show that
the biological pathway models can reside anywhere geographically on the planet
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Fig. 16 CytoSolve—a dynamic messaging approach

and can use the internet for communication through the controller. This does not
mean that we have to use the Internet. All models can be centralized on one
computer and CytoSolve will communicate locally to each model.

e Controller—This module serves to coordinate the computational activities
across the various models.

e Controller-to-Pathway Interface—These are the arrows in the diagram from the
Controller to the Pathway, and represent the mechanism by which the controller
communicates with each individual pathway model.

e User Interface—The user interface allows the user to specify which models will
be included within the architecture.

e Ontology—This is the data which specifies characteristics of each model’s
input—output behavior to allow the Controller to effectively communicate across
all models.

The key features of this architecture include an infrastructure that provides
simple communications interface to each model, is distributed, Web-enabled, and
automatically aggregates the models to build the integrated model. The architec-
ture supports both distributed and parallel processing, while using a hybrid of
shared memory and message passing. The shared memory is for tracking the
species concentrations across all models in time. Message passing is used for
remote communications between the controller and individual models. The
architecture is built in an open environment supporting: (1) publicly available
tools, and (2) emerging standards. The discussion of the details of the imple-
mentation, which is evolving, and currently in a web-based environment at
www.cystosolve.com, is beyond he scope of this discussion.
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5.3.2 CytoSolve: Solution Methodology

CytoSolve dynamically integrates the computations of each model to derive the
species concentration of the integrated model. Details of the solution methodology
are detailed in another publication [77].

In summary, the method works with the Controller performing initialization of
the system by allocating memory storage for the computed species concentrations
of each model and the integrated model. A component called the Monitormonitors
the progress of each model’s computation, during its initialization, accesses the
initial conditions. Control is then passed to the a component called the Commu-
nication Manager which awakens all the models to start up and become ready to
process a time step of calculation, and then invokes the Monitor.

The Monitor proceeds to invoke all models in parallel to execute a time step of
calculation using the species concentration values of the integrated model at time
step n, as the input to all models. Each model executes and computes one time step
of calculation on its own Remote Server. Monitor tracks the progress of each
model’s completion. Once a model completes its computation, the output is stored,
and the model then goes to sleep to optimize use of the Remote Server’s CPU
usage. By sleep, we mean that the model goes dormant until invoked again by the
Communications Manager to process another time step of calculation. Once all
models have completed their processing for a time step, the Monitor passes control
back to the Communications Manager, and the Monitor itself goes to sleep.

Once all models have completed a time step of calculation, the Communication
Manager invokes the Mass Balance component to dynamically couple the com-
putations at time step n of each model to evaluate the integrated model.

6 EGFR Model Validation

CytoSolve is validated by comparing the solution it produces with the one gen-
erated by Cell Designer, a popular tool for building molecular pathway models in a
monolithic manner. As a control, the Epidermal Growth Factor Receptor (EGFR)
model published by Kholodenko et al. is selected for this comparison. Snoep et al.
have authored the model into the SBML language. The entire EGFR model is
loaded into Cell Designer and executed on a single computer. The same entire
EGFR model, to test CytoSolve, is split into four models and distributed on four
different computers, as shown in Fig. 17. CytoSolve and Cell Designer are run for
a total of 10 s in simulation time.

6.1 Results

CytoSolve and Cell Designer produce near exact results as shown for two
example species in Fig. 18. The results demonstrate the viability of CytoSolve’s
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unique distributed approach not only to solve problems that monolithic
approaches are capable of solving but also to provide greater flexibility
and scalability in integrating multiple biological pathway models, which
monolithic approaches are incapable of doing. In CytoSolve, any one pathway
can exist in any format on any computer, and there is no need to manually load,
understand and interconnect each individual pathway, as is required in mono-
lithic systems.

CytoSolve generated exact results to Cell Designer; more importantly, the
integration of the four models in CytoSolve did not require any manual “wiring”
as is needed by Cell Designer. CytoSolve’s compute time was greater than Cell
Designer; however, most of this compute time was due to Transmission Time.
Since CytoSolve works in a distributed parallel fashion, its compute time is a
direct function of the compute time of the largest pathway plus the associated
Transmission Time and overhead for Controller Time to integrate. For Cell
Designer, the compute time will be the compute time of the whole integrated
pathway.

Finally, and perhaps equally important, is that managing a monolithic model,
composed of other models, is a change management nightmare. Consider a small
example of a monolithic model “cut and pasted” or concatenated from the four
models of EGFR, aforementioned, and each model being published and created by
different authors. Now, suppose once the monolithic model has been constructed,
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that many months later, the authors of each of these models changes rate constants,
pathway connections, etc., at that point the author of the monolithic model would
have to rebuild the entire monolithic model, by instantiating changes from each
author’s model, which may be tenable for four models (possibly based on the
complexity and domain specificity of each model). Modeling the whole cell while
managing such changes across a suite of hundreds of such models will be
untenable.

7 Solving an Unknown Problem Using CytoSolve

The immune system has many different types of cells acting together to protect the
body against viruses, bacteria, and other “foreign invaders.” Part of this protection
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includes the production of interferon (IFN), a protein that plays a special role in
triggering the body’s response. The following describes what interferon is and why
it is so important to the immune system.

7.1 IFN Response to Viral Infection

The immune system consists of a complex network of cells, tissues, and organs all
working in tandem to ward off infection and keep us healthy. This includes
interferon, one of the proteins called cytokines, which are diverse and potent
chemical messengers that can trigger the immune system to attack invading
pathogens. Interferon signals neighboring cells into action and also interferes with
how foreign cells grow and multiply.

In humans, IFNs also play a roles in cell growth, differentiation and immuno-
modulation. IFNs are divided into two groups depending on their molecular basis;
type I IFNs (IFN-alpha and IFN-beta) are produced by a variety of cells following
virus infection, and type II IFN (IFN-gamma) is produced by activated T cells and
natural killer (NK) cells [78]. There are three classes of Interferon, alpha, beta and
gamma. Interferon alpha and beta are produced by many cell types, including the
infection-fighting T-cells and B-cells in the blood, and are an important component
of the anti-viral response.

7.2 Elements of the IFN Response

The IFN response mechanism of the cell to virus infection is a core cellular
function. There are four key biological pathways, which are involved to elicit IFN
response to virus infection as shown earlier in Fig. 7:

Up regulation of IFN-Beta

IFN receptor signaling to produce IRF-7

Virus amplification cycle to produce more IFN-Beta and IFN-Alpha
Regulation and balancing by SOCS-1

7.2.1 Virus Infection Model

The virus infection pathway creates IFN-Beta as an initial response to virus
infection. Scientists in Moscow, Russia in 1994 modeled this pathway [79]. The
original code was written in MATLAB. In this pathway, the viruses injects single-
stranded RNA into the host cell, which leads to the formation of double-stranded
RNA. Double-stranded RNA triggers the activation of virus-activated kinase
(VAK), which phosphorylates IRF-3. Phosphorylated IRF-3 is a transcription
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factor for the IFN-Beta gene. The expression of this gene results in the initial
production of IFN-Beta.

7.2.2 TFN Receptor Signaling Model

The IFN receptor signaling produces IRF-7 as a preparation mechanism for
the infected cell and neighboring cells. Scientists in China in 2005 defined this
pathway model in FEBS [80]. Only a pathway diagram along with parameters
exists for this pathway model, but no software code. IFN-Beta (or IFN-Alpha)
lands on the IFNAR receptor to initiate the up regulation of IRF-7 which is a
critical protein for signaling the cell itself as well as neighboring cell of the virus
infection. The binding of IFN with the receptor leads to the STAT protein being
phosphorylated. The phosphorylated STAT forms a homo-dimer and becomes
the transcription factor for IRF-7 gene after binding to IRF-9, which leads to
expression of IRF-7. This signaling mechanism prepares the cell for further
defenses by producing IRF-7.

7.2.3 IFN Amplification Cycle Model

The IFN amplification cycle is a critical step in the response to protect the cell
from virus infection. A team of scientists from the America created a dynamic
model of this pathway. The article was published in the Journal of Theoretical
Biology [81]. They programmed the pathway in XPAUT which can be saved in
SBML. The virus interaction with IRF-7 not only serves to up-regulate IFN-beta
but also serves to up-regulate IFN-alpha.

7.2.4 SOCS1 Regulation Model

This biological pathway produces SOCS1 to regulate and balance the production
of IFNs. Without this pathway, the additional levels of IFNs, beyond what is
necessary to stop the virus infection, can itself have detrimental effects on the cell.
Scientists in Japan in 2001 defined this pathway model in Genome Informatics
[82]. They programmed the pathway in MATLAB. Here, JAK binds to the IFN
receptor and forms the JAK-IFNR receptor complex. Once IFN binds to the
receptor, the resulting complex associates with each other and forms a homo-
dimer. This dimer undergoes phosphorylation, leading to a form as IFNRJ2%*,
which catalyzes the phosphorylation of STATI1. The phosphorylated STAT1 also
forms a homo-dimer and acts as a transcription factor of SOCS1 gene. The
resulting protein, SOCS1, inhibits the kinase activity of IFNRJ2 and is the key
component of the negative feedback loop.
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In Fig. 19 below, each of the above models, as depicted is loaded into Cyto-
Solve for dynamic integration.

7.3 Results

The summary results from the integrated model of IFN are shown in Fig. 20. Key
molecular species presented in this figure are IRF-3, IRF-7, IFN-Beta and IFN-
Alpha. This integrated model combines the four pieces of interferon pathway:
virus infection leads to up regulation of IFN-Beta; IFN-Beta then results in the
creation of IRF-7; the existence of IRF-7 then results in positive feedback to which
increases a massive production of IFN-Alpha and IFN-Beta; finally, control of
JAK/STAT signal transduction pathway by SOCSI results in regulating and bal-
ancing the production of IFN-Alpha and IFN-Beta.

Close review reveals several important elements of the integrated model. First,
during the first ~ 13 h (~ 50,000 s), the concentration of IRF-7 through time is a
sigmoidal curve which reaches the steady state value of 0.7 nM. Second, during
this same first ~ 13 h period, the concentration of IFN-Beta and IFN-Alpha slowly
increases. What is interesting to note is that within the first 3.3 h (~ 12,000 s), the
initial production of IFN-Beta is then followed by the production of IFN-Alpha.
IFN-Beta is produced within the first 30—40 min (~2000 s to ~2500 s).
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The initial production of IFN-Beta, after the 40 min period and before the 3.3 h
period is defined by a marked increase in IFN-Beta production.

Third, after the first ~13 h (~50,000 s) to ~25 h (~90,000 s), IFN-Beta and
IFN-Alpha exponentially increases. Fourth, after ~25 h (~90,000 s), IFN-Beta
and IFN-Alpha concentrations reach their maximum and gradually approach
steady state due to the balance between positive feedback system and negative
feedback control from SOCS1 activation.

The results of the CytoSolve solutions were tested with known experimental
data. This revealed that IFN Beta production in the first 30—40 min, as predicted by
the model, matches experimental data. In addition, IFN-Alpha begins production
after a ~3 h delay time, and this verifies with the experimental approximated
expected time required for the positive feedback cycle to start. Finally, both IFNs
reach their peak in the ~20 h range as predicted by various experimental research
[83-85]. Greater details of this integrative model of IFN are described in a
forthcoming paper.

8 Discussion and Conclusions

This paper has introduced CytoSolve, a new computational environment for
integrating biomolecular pathway models and a collaborative platform for com-
putational molecular systems biology. The initial results from the EGFR example
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has demonstrated that CytoSolve can serve as an alternative to the monolithic
approaches, such as Cell Designer. The solution of the IFN integrated model
demonstrates CytoSolve’s ability to solve new problems by merging multiple
molecular pathway models.

The purpose of CytoSolve is to offer a platform for building large-scale models
by integrating smaller models. Clearly, if we want to model the whole cell from
hundreds of sub-models, each of which is owned by various authors (each making
changes to their models), the monolithic approach is not scalable. CytoSolve’s
dynamic messaging approach offers a scalable alternative since the environment is
opaque (treats each model as a black box) support for both public and proprietary
models is extensible to support heterogeneous source code formats, and finally
supports localized integration, a user can initiate integration from their own local
environment.

CytoSolve is now available at http://www.cytosolve.com as on-line web com-
putational resource. The portal offers researchers an environment to collaborate
and integrate quantitative molecular pathways without needing to be a specialist
on the computational architecture and neither an expert of all the multiple sub-
models to be merged. Future work we will include a more sophisticated Ontology
to manage nomenclature and species identification across all individual biological
pathway models to be integrated by means of the web application, and automated
searching for related biological pathways.

8.1 Future Work

This research may also serve as a foundation for several new areas of investigation
including:

8.1.1 Spatial Scale Variation

At the present time, CytoSolve supports only computational models that represent
one single pool of material or several distinct pools connected with specific
transport relations. We have not considered changes in concentrations on a con-
tinuous spatial scale. We believe that the architecture, based on its modular
approach and support for multiple compartments, can support varying spatial
scales. However, more testing will have to be performed to understand the com-
putation times required to fully support such spatial variations. The description
language FieldML is available to support this process.

8.1.2 Adaptive Time Stepping of the Controller

All models are currently computed using a single adaptive time step, which is
taken to be the fastest time step among the ensemble of models. This is not
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optimal, as some component models may be varying more slow than others.
Additional effort is required to implement intelligent adaptive time stepping at the
Controller level to observe the time scales of different models and invoke them
only when necessary. Such an effort will result in improved computation time
performance.

8.1.3 Implementation and Integration with Emerging Ontologies

CytoSolve has support for integrating other ontologies such as MIRIAM; however,
future research needs to be done to fully integrate MIRIAM and other such
ontologies. This effort will enable CytoSolve to support many more model formats
with greater ease, leveraging standards that the systems biology community
globally accepts.

9 Epilogue

In the Summer of 1978, I was 14 years old and had just completed my sophomore
year at Livingston High School in New Jersey. That summer I had been fortunate
to have been accepted into the Courant Institute of Mathematical Sciences gifted
students program in computer science at New York University. During that
Summer, I and 40 other of my fellow students learned eight different computer
programming languages including FORTRAN, COBOL and PL/1 to name a few.
The course that summer at NYU, and my deep interest in mathematics, in retro-
spect were important elements that supported my future work.

Swamy Laxminarayana, or Swamy as I called him, however, was my gateway
into a completely new world from which I can trace nearly all of my accom-
plishments. Swamy exposed me to the world of pattern analysis and recognition at
an early age. He was a friend above all; although I was nearly 30 years younger than
him, he treated me as a colleague with great respect, genuine warmth, and love. My
mom, Meena Ayyadurai, worked at the University of Medicine and Dentistry of
New Jersey (UMDNIJ) as a Systems Analyst while Swamy worked upstairs with
Dr. Leslie P. Michelson in the Laboratory for Computer Science. My mom had first
introduced me to Dr. Michelson with whom I had begun to build an electronic mail
system. In fact, that electronic mail system was the worlds first E-Mail System, for
which I received recognition by the Westinghouse Science Award in 1981.

I recall while I was in the midst of building that E-Mail System in 1980,
Dr. Michelson began interviewing candidates to find a research staff member to do
new research in biomedical engineering. I remember Swamy coming to see
Dr. Michelson for the interview. He was dressed in a brown suit with a tie and
beige shirt. His hair was worn back with light streaks of grey, he had a peppered
mustache, and greeted me as we passed with a huge smile. He appeared very eager,
with a mission and purpose.
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Swamy, like my mom and I, was one of the few Indians who worked at
UMDMI. Since the chance meeting in Dr. Michelson’s laboratory, I saw him again
at various times passing in the hallway. Again the greetings were silent with
simple exchanges of smiles. One day when I went home for dinner, I saw Swami
seated at our dinner table! My mom, always generous and kind, had invited
Swamy over to our house for dinner as she had bumped into him in the hallway.
After dinner, Swamy and I sat down and spoke for the first time. He seemed to be
on a mission, in a gentle way, to convince me to pursue science, and use my skills
in science, mathematics and computer science to help the world.

In particular that conversation opened me to the world of pattern analysis and
pattern recognition. I remember that conversation well. Swamy began by telling
me about some research he and his sister had done in India. He used this research
example to give me an example of how pattern analysis could be used. The
example was rather unconventional compared to his conventional research
assignments. He and his sister were very curious about seeing if there was a
correlation or pattern to peoples palm prints and the onset of disease. In short,
Swamy was interested in exploring if there was any truth in palmistry. He
explained in detail how they had collected nearly 1000 palm prints from various
people. They then created a database with each individual’s name and their palm
print. The palm print was a hand drawn sketch. They then had asked each person
for their health history including any major diseases they had had or were suffering
from. This health history was attached to the palm print.

Each palm print and the associated health history were reviewed manually to
see if there were correlations between palm print features to health history.
According to Swamy they had found some clear patterns. Certain palm print
features had a high correlation to certain forms of disease. He provided me various
examples of what he and his sister had discovered. Here was mathematics and
modern science being applied to understand an ancient practice. Palmistry itself
was a method of visual pattern recognition. Swamy’s example intrigued me.

Swamy then provided me another example of how pattern recognition could be
used. One of Swamy’s passions was to model the human heart’s electrophysio-
logical behavior. He shared with me diagrams written on notepads at our dinning
room table of the then current theories of how heart signals propagate. It seemed
quite complex. He advised me to explore this field since there were many
unknowns which would require someone good at both mathematics and computer
science to model such phenomenon. Remember, this was at a time when the use of
computers was just in their nascent state in the biological sciences.

That dinner conversation really got me thinking. While I had learned a lot of
mathematics, was a star student in my high school, and was challenging myself in
building the E-Mail System, something in my heart awoke. Swamy’s conversation
inspired me to explore how the skills I was developing could be applied to pattern
analysis. Moreover, applying computing to biology seemed fascinating. Over the
next several months, Swamy and I kept in touch and would have lunch together in
the UMDMIJ cafeteria. He was always encouraging of my work and kept asking me
to work with him. In the Summer of 1981, I was close to completing a version of
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the first E-Mail System and would have more free time. I had just been accepted to
M.LT., and I promised Swamy to do a project with him, even if it was long
distance from M.LT.

During that first semester at M.L.T., the Institute had recreantly implemented
UROP, Undergraduate Research Opportunity Program. One of the research
opportunities was to work in pattern analysis for Tadoma. Tadoma is a method by
which deaf-blind people communicate. Few understood how deaf-blind people
were able to “listen” to someone else through the tactile method of putting their
hand on someone’s face. I mentioned this project to Swamy in a phone call and he
encouraged me to pursue it since it would provide me some hands-on learning on
pattern analysis project.

I kept Swamy posted on my activities at M.I.'T. In one of our conversations,
Swamy told me about another interesting project that involved heart electro-
physiology relative to young infants. Apparently there was a phenomenon where
young infants were dying in there sleep. This was called Sudden Infant Death
Syndrome (SIDS). In SIDS, babies died in their sleep from what was known as an
apnea. Today many hospitals and sleep labs test people for sleep apnea. At that
time in the early 1980s, research in SIDS was just a new field. Swamy, through his
collaborations, had acquired access to the best infant sleep data through Monte-
fiore Hospital in New York City. This time series sleep data provided sleep states
of thousands of babies as well as points in time at which they had the occurrence of
an apnea. Swamy’s thesis was that babies sleep states, or patterns of sleep states,
may be indicative of the onset of an apnea.

Swamy gently prodded me to get involved in this project to build algorithms to
test his hypothesis. Over the next several months, he provided me various books on
Haar and Walsh Transforms as well as books on signals processing. Signals
processing was a passion of Swamy’s. He wanted me to learn as much as possible
in this field for he knew that it would be a strong foundation for future work in
pattern analysis. I as then a 17 year old had no idea of its long term importance.
The Tadoma project I was working on at that time provided me experience in data
acquisition but not in actually developing algorithms.

Swamy, to support my learning, advised me to write up sample programs using
Haar and Walsh Transforms. I took his advice and learned a great deal about these
two signals processing methodologies. Next year, Swamy provided me raw data of
SIDS from Montefiore Hospital that he had acquired in 1977. He also provided me
various papers he had written dealing with SIDS in his previous work. The earlier
programming project I had done on Haar and Walsh Transforms was valuable to
the SIDS project. In this project, my task was to review the data and see if I could
find patterns of sleep states leading to the onset of an apnea.

The SIDS project was like solving a puzzle. Swamy taught me that babies have
six states of sleep, whereas adults only have five. The data resembled up and down
steps, each step being a sleep state. There were certain points which were marked
when an apnea took place. The goal was to look backward from the point of the
apnea to see if certain patterns sleep state correlated to when an apnea occurred.
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I used the earlier Haar and Walsh Transforms to build pattern analysis methods to
predict the onset of an apnea from the sleep waiting times.

While traveling back and forth between M.I.T. and UMDNIJ, Swamy never
micro managed me but was always there with patience to answer any of my
questions. I worked on this for over a year. Some valuable results came from the
analysis. The next year, the Fall of 1983, we had heard about the international
conference to be held in Espoo, Finland. This conference on medical and bio-
logical engineering was the worlds largest such event. In the world of academia
were as someone once said, “people fight over nothing”, Swamy was unbelievably
generous, again in retrospect. He wanted to include my results in a paper on SIDS,
and where many in academia would have never thought about giving an under-
graduate authorship on a paper, Swamy made me a co-author. In addition he
invited me to come to Espoo to co-present the paper with him.

Going to Finland would be my first trip out of the United States to a foreign
country besides India. Our paper was accepted for the Summer 1984 Conference. I
was on my way to Finland. Attending that medical conference was an amazing
experience. Twenty-seven years later today, I still remember that trip vividly. I
was the youngest registering at the conference, but Swamy introduced me as his
colleague from MLLT. to all of the other scientists. For a 19-year old to go on a
flight, attend banquets, hear scientific talks, travel the Finnish countryside, and
hear a new language, was out of this world. Swamy had made that experience
possible for me. He exposed me to a larger world, beyond science.

It was clear to me that scientists went to these conferences not just for the
science but to experience other lands, local cuisines, and meet other people. Had
Swamy not taken me on this trip, I would never have been exposed to this aspect of
science. After coming back from that Conference, my enthusiasm for science and
pursuing research in pattern analysis and pattern recognition skyrocketed.

During 1985-1994, to the beginning of my Ph.D. at M.L.T., I participated in
numerous pattern recognition research projects. Swamy and I would talk from time
to time on the phone, and I would keep him abreast on my work at MIT. He was
always so very supportive, encouraging and uplifting. He was always positive and
always ready to help. Swamy shared with me only a bit of his personal history. All
I knew is that he had been in Holland for sometime, had gotten married to a Dutch
woman, and had children. His moral support of my research activities helped me in
my research pursuits. Among the projects I was involved in included: handwriting
recognition, ultrasonic wave analysis, document analysis, image flow visualiza-
tion, and a number of other pattern analysis projects.

From these various pattern analysis projects, there appeared to be a common set
of strategies and methods that could be abstracted across all fields. That thought
led to my Ph.D. thesis at M.I.T. entitled Information Cybernetics. In 1993, while in
the middle of my Ph.D. work, I was invited to participate in a very interesting
pattern analysis competition. This competition was not scientific in origin; it was
from the U.S. Government. In particular, the Executive Office of the White House,
with then President Bill Clinton, was looking for intelligent ways using comput-
ers to sort their E-Mail. At that time, the White House was receiving nearly
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5,000 E-Mail per day, and this was before the introduction of the World Wide Web.
There were 147 different categories. Student interns at the White House were
manually reading each E-Mail and assigning them into one of the 147 categories.
Categories included drugs, education, death threats, etc. The White House was
interested in automatic filtering and sorting of E-Mail for two reasons.

I approached the White House competition with little knowledge natural lan-
guage processing. My approach was engineering, where I used a hybrid method of
employing nearly 19 different methods spanning feature extraction, clustering, to
supervised and unsupervised learning. I was the only graduate student involved.
The other five competitors were private and publicly traded companies. I won the
competition.

I took time off in M.LT. in 1994 to start EchoMail, a company for pattern
analysis of electronic mail. We grew the company to nearly 300 employees
worldwide by year 2000. I remember hearing from Swamy once during that time
asking me for a letter of recommendation as he was taking a new job in the
Midwest. It was weird for me to write a letter of recommendation for him. He had
written several for me many decades before. Following that interaction I had not
heard from him. It was my mom who a few years later informed me of his passing.

Hearing of Swamy’s passing was sad. He had always been there and now was
no more. I wondered who was with him, what his life had been during those past
10 years when I had lost touch. I recall Swamy and I sharing at our first dinner
conversation thoughts about ancient Indian science, its mystical and scientific
aspects, including the concept of Soul. There was an unstated agreement that Soul
never dies. As I heard about Swamy’s passing, I flashed back to that dinner
conversation and knew his spirit would and had never died.

As I'look back from the time of my meeting Swamy till today, 2010, my entire
history of work, particularly my success with EchoMail, development of Cyto-
Solve, and my recent research at M.I.T. to discover patterns of coherence that
bridge traditional systems of medicine with modern systems biology, can all be
traced to that dinner conversation with Swamy. As I write this last sentence, I am
deeply moved and wish Swamy was here so we could have dinner again and I
could thank him for the wondrous gift he gave a 16-year old nearly 30 years ago.
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